Sunday, March 07, 2010

Lava likely made river-like channel on Mars

Details from the Ascraeus channel (red), meandering across the surface of Mars. The insets in the black boxes show close-ups of some of the structures that lava can form: (left) branched channels, (middle) a snaking channel and (right) rootless vents; the rootless vents are also marked by yellow spots on the main image.Flowing lava can carve or build paths very much like the riverbeds and canyons etched by water, and this probably explains at least one of the meandering channels on the surface of Mars. These results were presented on March 4, 2010 at the 41st Lunar and Planetary Science Conference by Jacob Bleacher at NASA’s Goddard Space Flight Center, Greenbelt, Md. Whether channels on Mars were formed by water or by lava has been debated for years, and the outcome is thought to influence the likelihood of finding life there.

"To understand if life, as we know it, ever existed on Mars, we need to understand where water is or was," says Bleacher. Geologists think that the water currently on the surface of Mars is either held in the soil or takes the form of ice at the planet's north and south poles. But some researchers contend that water flowed or pooled on the surface sometime in the past; water in this form is thought to increase the chance of some form of past or present life.

One of the lines of support for the idea that water once flowed on Mars comes from images that reveal details resembling the erosion of soil by water: terracing of channel walls, formation of small islands in a channel, hanging channels that dead-end and braided channels that branch off and then reconnect to the main branch. "These are thought to be clear evidence of fluvial [water-based] erosion on Mars," Bleacher says.

Lava is generally not thought to be able to create such finely crafted features. Instead, "the common image is of the big, open channels in Hawaii," he explains.

The Tharsis region of Mars, including the three volcanoes of Tharsis Montes (Arsia, Pavonis and Ascraeus Mons), as well as Olympic Mons in the upper left corner.Bleacher and his colleagues carried out a careful study of a single channel on the southwest flank of Mars' Ascraeus Mons volcano, one of the three clustered volcanoes collectively called the Tharsis Montes. To piece together images covering more than 270 kilometers (~168 miles) of this channel, the team relied on high-resolution pictures from three cameras—the Thermal Emission Imaging System (THEMIS), the Context Imager (CTX) and the High/Super Resolution Stereo Color (HRSC) imager—as well as earlier data from the Mars Orbiter Laser Altimeter (MOLA). These data gave a much more detailed view of the surface than previously available.

Because the fluid that formed this and other Ascraeus Mons channels is long-gone, its identity has been hard to deduce, but the visual clues at the source of the channel seem to point to water. These clues include small islands, secondary channels that branch off and rejoin the main one and eroded bars on the insides of the curves of the channels.

Thursday, March 04, 2010

GOES-P Mission Liftoff of Successfully


3-2-1 and Liftoff of GOES-P!
The Delta IV carrying GOES-P lifted off at 6:57 p.m. EST from Launch Complex 37B at Cape Canaveral Air Force Station in Florida.

After reaching orbit, GOES-P will become GOES-15. The satellite will be used to monitor and predict weather, measure ocean temperatures, perform climate studies, and detect hazards with its emergency beacon support and Search and Rescue Transponder.

GOES-P was built by Boeing for NASA and the National Oceanic and Atmospheric Administration, or NOAA.

Geostationary Operational Environmental Satellite-P, or GOES-P, is the latest in a series of meteorological satellites designed to watch for storm development and weather conditions on Earth. From its location in Earth orbit, GOES-P's state-of-the-art instrumentation will supply data used in weather monitoring, forecasting and warnings. It also will detect ocean and land temperatures, monitor space weather, relay communications and provide search-and-rescue support.

Tuesday, March 02, 2010

NASA Discovery and Crew Prepare for STS-131 Mission

Commander Alan Poindexter is set to lead the STS-131 mission to the International Space Station aboard space shuttle Discovery. Joining Poindexter will be Pilot Jim Dutton and Mission Specialists Rick Mastracchio, Clay Anderson, Dorothy Metcalf-Lindenburger, Stephanie Wilson and Naoko Yamazaki of the Japan Aerospace Exploration Agency.

Discovery will carry a multi-purpose logistics module filled with science racks for the laboratories aboard the station. The mission has three planned spacewalks, with work to include replacing an ammonia tank assembly, retrieving a Japanese experiment from the station’s exterior, and switching out a rate gyro assembly on the S0 segment of the station’s truss structure.

STS-131 will be the 33rd shuttle mission to the station.

Sunday, February 28, 2010

Mars Odyssey and Phoenix Mars Lander Missions Status Report

NASA's Mars Odyssey began a second campaign Monday to check on whether the Phoenix Mars Lander has revived itself after the northern Martian winter. The orbiter received no signal from the lander during the first 10 overflights of this campaign.

Odyssey will listen for Phoenix during 50 additional overflights, through Feb. 26, during the current campaign.

Phoenix Mars Lander and surrounding ground as seen from orbit on Feb. 25, 2010

Phoenix landed on Mars on May 25, 2008, and operated successfully in the Martian arctic for about two months longer than its planned three-month mission. Operations ended when waning sunlight left the solar-powered craft with insufficient energy to keep working. The season at the Phoenix landing site is now mid-springtime, with the sun above the horizon for roughly 22 hours each Martian day. That is comparable to the illumination that Phoenix experienced a few weeks after completing its three-month primary mission.

Phoenix was not designed to withstand the extremely low temperatures and the ice load of the Martian arctic winter. In the extremely unlikely event that the lander has survived the winter and has achieved a stable energy state, it would operate in a mode where it periodically awakens and transmits a signal to any orbiter in view.

A third campaign to check on whether Phoenix has revived itself is scheduled for April 5-9, when the sun will be continuously above the Martian horizon at the Phoenix site.

Mars Odyssey is managed for NASA's Science Mission Directorate by the Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and made the spacecraft. The successful Phoenix mission was led by Peter Smith of the University of Arizona, Tucson, with project management at JPL and development partnership at Lockheed Martin. International contributions came from the Canadian Space Agency; the University of Neuchatel, Switzerland; the universities of Copenhagen and Aarhus in Denmark; the Max Planck Institute in Germany; the Finnish Meteorological Institute; and Imperial College, London.

Monday, February 22, 2010

Latest Images of space shuttle Endeavour

Headed for the Hangar

Space shuttle Endeavour is prepared for transport to the Orbiter Processing Facility following its successful landing on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida.

Homecoming

Darkness enshrouded space shuttle Endeavour as it touched down on Runway 15 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. After 14 days in space, Endeavour's 5.7-million-mile STS-130 mission was completed on orbit 217.

During the STS-130 mission, the crew installed the Tranquility node, a module that provides additional room for crew members and many of the station's life support and environmental control systems. Attached to Tranquility is a cupola that provides a panoramic view of Earth, celestial objects and visiting spacecraft. The module was built in Turin, Italy, by Thales Alenia Space for the European Space Agency. With these improvements, the orbiting laboratory is approximately 90 percent complete.

Behold the Violent History of Saturn's White Whale Moon

Like the battered white whale Moby Dick taunting Captain Ahab, Saturn's moon Prometheus surges toward the viewer in a 3-D image from NASA's Cassini spacecraft.

The image exposes the irregular shape and circular surface scars on Prometheus, pointing to a violent history. These craters are probably the remnants from impacts long ago.

Saturn's potato-shaped moon Prometheus is rendered in three dimensions in this close-up from Cassini.

Saturn's potato-shaped moon
Prometheus is rendered in three dimensions
in this close-up from Cassini.

Prometheus is one of Saturn's innermost moons. It orbits the gas-giant at a distance of about 140,000 kilometers (86,000 miles) and is 86 kilometers (53 miles) across at its widest point. The porous, icy world was originally discovered in images taken by NASA's Voyager 1 spacecraft back in 1980.

Cassini's narrow-angle camera captured two black-and-white images of the moon on Dec. 26, 2009, and the imaging team combined the images to make this new stereo view. It looks different from the "egg-cellent" raw image of Prometheus obtained on Jan. 27 because that view shows one of the short ends of the oddly shaped moon. In this 3-D image, the sun illuminates Prometheus at a different angle, making the moon's elongated body visible.

Wednesday, February 17, 2010

NASA's WISE Mission release First Images

Visitor from Deep Space
Comet Siding Spring appears to streak across the sky like a superhero in this new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE. The comet, also known as C/2007 Q3, was discovered in 2007 by observers in Australia.






At the Heart of Stellar Chaos This infrared image taken by
NASA's Wide-field Infrared Survey Explorer, or WISE, shows a star-forming cloud teeming with gas, dust and massive newborn stars. The inset reveals the very center of the cloud, a cluster of stars called NGC 3603. It was taken in visible light by NASA's Hubble Space Telescope.





Our Neighbor Andromeda The immense Andromeda galaxy, also known as Messier 31 or simply M31, is captured in full in this new image from NASA's Wide-field Infrared Survey Explorer, or WISE.







Warped Andromeda This image from NASA's Wide-field Infrared Survey Explorer, or WISE, highlights the Andromeda galaxy's older stellar population in blue. It was taken by the shortest-wavelength camera on WISE, which detects infrared light of 3.4 microns.





The Dirt on Andromeda This image from NASA's Wide-field Infrared Survey Explorer, or WISE, highlights the dust that speckles the Andromeda galaxy's spiral arms. It shows light seen by the longest-wavelength infrared detectors on WISE (12-micron light has been color coded orange, and 22-micron light, red).





Fornax Galaxy Cluster This image of a dense cluster of galaxies was captured by NASA's Wide-field Infrared Survey Explorer, or WISE. The cluster, called Fornax because of its location in a constellation of the same name, is 60 million light-years from Earth, and is one of the closest galaxy clusters to the Milky Way.





Ablaze with Infrared Light Is it a bird, or a plane? No, it's comet Siding Spring streaking across the sky, as seen by NASA's Wide-field Infrared Survey Explorer, or WISE. This movie stitches together five frames taken by WISE as it orbited Earth during its ongoing infrared survey of the whole sky. The images span about eight hours of time.

Tuesday, February 16, 2010

Layers Piled in a Mars Crater Record a History of Changes

Near the center of a Martian crater about the size of Connecticut, hundreds of exposed rock layers form a mound as tall as the Rockies and reveal a record of major environmental changes on Mars billions of years ago.

The history told by this tall parfait of layers inside Gale Crater matches what has been proposed in recent years as the dominant planet-wide pattern for early Mars, according to a new report by geologists using instruments on NASA's Mars Reconnaissance Orbiter.

"Looking at the layers from the bottom to the top, from the oldest to the youngest, you see a sequence of changing rocks that resulted from changes in environmental conditions through time," said Ralph Milliken of NASA's Jet Propulsion Laboratory, Pasadena, Calif. "This thick sequence of rocks appears to be showing different steps in the drying-out of Mars."

Using geological layers to understand stages in the evolution of a planet's climate has a precedent on Earth. A change about 1.8 billion years ago in the types of rock layers formed on Earth became a key to understanding a dramatic change in Earth's ancient atmosphere.

Milliken and two co-authors report in Geophysical Research Letters that clay minerals, which form under very wet conditions, are concentrated in layers near the bottom of the Gale stack. Above that, sulfate minerals are intermixed with the clays. Sulfates form in wet conditions and can be deposited when the water in which they are dissolved evaporates. Higher still are sulfate-containing layers without detectable clays. And at the top is a thick formation of regularly spaced layers bearing no detectable water-related minerals.

Monday, February 15, 2010

SDO to Spike important Space Weather Data

Solar storms can wreak havoc on power grids, communications systems and delicate satellites. Currently, there's no way to predict severe space weather, but that could change with the heaps of information NASA's Solar Dynamics Observatory, or SDO, will send back to Earth after its 2010 launch.

"The biggest challenge of this mission was the data rate," said Liz Citrin, SDO project manager at NASA's Goddard Space Flight Center in Greenbelt, Md. "SDO will blast back 1.5 terabytes of information every day . . . that's equivalent to a half-million song downloads. It's unprecedented."

Citrin said there was no way to record that much data on board the spacecraft. Instead, the SDO team designed a mammoth 18-meter radio antenna, as well as a back-up, at White Sands Space Harbor in Las Cruces, N.M., to receive it all. Then, the data will be sent out to scientists at Stanford University in Palo Alto, Calif., the University of Colorado at Boulder, and Lockheed Martin's Solar Astrophysics Lab in Colorado.

The National Oceanic and Atmospheric Administration's Space Weather Prediction Center also is expecting to receive quick-look data the moment SDO is operational.

Another pretty cool technology developed by the SDO team to handle the data rate was the use of the Ka band, which recently was put to use for the Lunar Crater Observation and Sensing Satellite, or LCROSS, mission.

SDO has three major instruments on board that will send data back for at least five years, hopefully 10.

Both the Helioseismic and Magnetic Imager, or HMI, and the Atmospheric Imaging Assembly, or AIA, will allow scientists to see the entire disc of the sun in very high resolution -- 4,096 by 4,096 mm CCDs. In comparison, a standard digital camera uses a 7.176 by 5.329 mm CCD sensor.

AIA also will image the outer layer of the sun's atmosphere, while the Extreme ultraviolet Variability Experiment, or EVE, measures its ultraviolet spectrum every 10 seconds, 24 hours a day.

HMI will map the helioseismic and magnetic fields of the sun to understand its interior and magnetic activity.

"Space weather forecasting is in its infancy. . . just like hurricane forecasting was years ago. We built up experience in collecting data, designed models, tested those models, and now look what we can do," said Citrin. "SDO and all of NASA's Living with a Star Program missions will lead to better prediction of space weather."

SDO will travel to its geosynchronous transfer orbit aboard an Atlas V rocket, a trip that's been much anticipated. The mission was supposed to launch in August 2008, but the spacecraft team needed a few more months of test time.

"Atlas manifest challenges resulted in the current launch date in 2010. The mission team has been very patient and we're all happy to be launching now," said Rex Engelhardt, SDO mission manager.

NASA's Launch Services Program, or LSP, at NASA's Kennedy Space Center, began processing SDO for launch in July 2009.

Engelhardt said from the first day the team had to consider the spacecraft's high-contamination sensitivity.
Inside the Astrotech Space Operations facility in Titusville, Fla., technicians set up a laminar flow enclosure -- a four-wall clean enclose that blows air in one side and sucks it out the other -- keeping the spacecraft free of dust, particles, dirt and debris.

Another unique aspect of this mission is the rocket itself. Unlike other rockets assembled at the launch pad, Atlas rockets are put together in the Vertical Integration Facility on Launch Complex-41 at Cape Canaveral Air Force Station.

"Everything is protected until rollout, which right now is scheduled for Feb. 9," said Engelhardt. "If we needed to roll back, we perform a few disconnects and roll it back. The pad is just a slab of concrete, so after launch there's no tower to refurbish."

Things are looking good for Engelhardt and his LSP team members, who are ready to kick this year off from their home base. Last year they processed and launched eight missions, three from Vandenberg Air Force Base in California.

Friday, February 12, 2010

Shuttle Crew’s First STS-130 Spacewalk Completed


STS-130 crew members installed a 2,600-cubic-foot addition to the International Space Station early Friday, combining the talents of robotic arm operators and spacewalkers to connect the Italian-built Tranquility module.

Tranquility was installed at 1:20 a.m. EST Friday over the Indian Ocean west of Singapore. Mission Specialist Kay Hire and Pilot Terry Virts used the station’s Canadarm2 to pull Tranquility out of the space shuttle Endeavour’s payload bay and position it on the port side of the station’s 10-year-old Unity module. Tranquility was locked in place with 16 remotely controlled bolts.

Spacewalkers Bob Behnken and Nick Patrick stepped outside the Quest airlock module at 9:17 p.m. Thursday and immediately began preparing the new module for its trip from the cargo bay to the station. Mission Specialist Steve Robinson helped coordinate the 6-hour, 32-minute spacewalk, which ended at 3:49 a.m. Friday. As Behnken and Patrick waited for the robotic arm operators to carefully maneuver Tranquility into position, they relocated a temporary platform from the Special Purpose Dexterous Manipulator, or Dextre, to the station’s truss structure and installed two handles on the robot.

Once Tranquility was structurally mated to Unity, the spacewalkers connected heater and data cables that will integrate the new module with the rest of the station’s systems. They also pre-positioned insulation blankets and ammonia hoses that will be used to connect Tranquility to the station’s cooling radiators during the mission’s second spacewalk that begins Saturday night. The station’s new room with a view, the cupola, will be moved from Tranquility’s end to its Earth-facing port on Sunday.

As the spacewalk ended, Mission Control reported that all data and heater connections were working well, and that the vestibule separating Tranquility and Unity had passed its initial leak check.

Friday, January 29, 2010

Prometheus: Over Easy

Prometheus as seen by Cassini
Looking for all intents and purposes like a celestial egg after a session in Saturn's skillet, Prometheus displayed its pockmarked, irregular surface for NASA's Cassini spacecraft on Jan. 27, 2010.

Prometheus is one of Saturn's innermost moons. It orbits the gas-giant at a distance of 139,353 kilometers (85,590 miles) and is 86 kilometers (53 miles) across at its widest point. The porous, icy-bodied world was originally discovered by images taken by Voyager 1 back in 1980. You could say this latest "egg-cellent" view has the Cassini science team licking their chops at the thought of future Prometheus images.

This raw, unprocessed image of Prometheus [pro-MEE-thee-us] , taken in visible light, was obtained by Cassini's narrow-angle camera at a distance of approximately 36,000 kilometers (23,000 miles).

The Cassini Equinox Mission is a joint United States and European endeavor. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL.

Monday, January 25, 2010

Rover Gives NASA an "Opportunity" to View Interior of Mars

NASA's Mars exploration rover Opportunity is allowing scientists to get a glimpse deep inside Mars.

Perched on a rippled Martian plain, a dark rock not much bigger than a basketball was the target of interest for Opportunity during the past two months. Dubbed "Marquette Island," the rock is providing a better understanding of the mineral and chemical makeup of the Martian interior.

"Marquette Island is different in composition and character from any known rock on Mars or meteorite from Mars," said Steve Squyres of Cornell University in Ithaca, N.Y. Squyres is principal investigator for Opportunity and its twin, Spirit. "It is one of the coolest things Opportunity has found in a very long time."

During six years of roving, Opportunity has found only one other rock of comparable size that scientists conclude was ejected from a distant crater. The rover studied the first such rock during its initial three-month mission. Called "Bounce Rock," that rock closely matched the composition of a meteorite from Mars found on Earth.

Marquette Island is a coarse-grained rock with a basalt composition. The coarseness indicates it cooled slowly from molten rock, allowing crystals time to grow. This composition suggests to geologists that it originated deep in the crust, not at the surface where it would cool quicker and have finer-grained texture.

"It is from deep in the crust and someplace far away on Mars, though exactly how deep and how far we can't yet estimate," said Squyres.

Thursday, January 21, 2010

Public Invited To Pick Pixels on Mars


The most powerful camera aboard a NASA spacecraft orbiting Mars will soon be taking photo suggestions from the public.

Since arriving at Mars in 2006, the High Resolution Imaging Science Experiment, or HiRISE, camera on NASA's Mars Reconnaissance Orbiter has recorded nearly 13,000 observations of the Red Planet's terrain. Each image covers dozens of square miles and reveals details as small as a desk. Now, anyone can nominate sites for pictures.

"The HiRISE team is pleased to give the public this opportunity to propose imaging targets and share the excitement of seeing your favorite spot on Mars at people-scale resolution," said Alfred McEwen, principal investigator for the camera and a researcher at the University of Arizona, Tucson.

The idea to take suggestions from the public follows through on the original concept of the HiRISE instrument, when its planners nicknamed it "the people's camera." The team anticipates that more people will become interested in exploring the Red Planet, while their suggestions for imaging targets will increase the camera's already bountiful science return. Despite the thousands of pictures already taken, less than 1 percent of the Martian surface has been imaged.

Students, researchers and others can view Mars maps using a new online tool to see where images have been taken, check which targets have already been suggested and make new suggestions. "The process is fairly simple," said Guy McArthur, systems programmer on the HiRISE team at the University of Arizona. "With the tool, you can place your rectangle on Mars where you'd like."

McArthur developed the online tool, called "HiWish," with Ross Beyer, principal investigator and research scientist at NASA's Ames Research Center in Moffett Field, Calif., and the SETI Institute in Mountain View, Calif.

In addition to identifying the location on a map, anyone nominating a target will be asked to give the observation a title, explain the potential scientific benefit of photographing the site and put the suggestion into one of the camera team's 18 science themes. The themes include categories such as impact processes, seasonal processes and volcanic processes.

The HiRISE science team will evaluate suggestions and put high-priority ones into a queue. Thousands of pending targets from scientists and the public will be imaged when the orbiter's track and other conditions are right.

Sunday, January 17, 2010

Dune Symmetry Inside Martian Crater

Dune Symmetry Inside Martian Crater
Dunes of sand-sized materials have been trapped on the floors of many Martian craters. This is one example, from a crater in Noachis Terra, west of the giant Hellas impact basin.

The High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter captured this view on Dec. 28, 2009.

The dunes here are linear, thought to be due to shifting wind directions. In places, each dune is remarkably similar to adjacent dunes, including a reddish (or dust colored) band on northeast-facing slopes. Large angular boulders litter the floor between dunes.

The most extensive linear dune fields know in the solar system are on Saturn's large moon Titan. Titan has a very different environment and composition, so at meter-scale resolution they probably are very different from Martian dunes.

This image covers a swath of ground about 1.2 kilometers (three-fourth of a mile) wide, centered at 42.7 degrees south latitude, 38.0 degrees east longitude. It is one product from HiRISE observation ESP_016036_1370. The season on Mars is southern-hemisphere autumn. Other image products from this observation are available at http://hirise.lpl.arizona.edu/ESP_016036_1370.

The University of Arizona, Tucson, operates the HiRISE camera, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft.

Wednesday, January 13, 2010

Variations in Soft Soil of 'Troy' (False Color)



The soft soil exposed when wheels of NASA's Mars Exploration Rover Spirit dug into a patch of ground dubbed "Troy" exhibit variations in hue visible in this image, in which the colors have been stretched to emphasize the differences.

Spirit used its panoramic camera during the 1,892nd Martian day, or sol, of the rover's mission on Mars (April 29, 2009) to take the three images combined into this composite image. The three images were taken through filters centered at wavelengths of 750 nanometers, 530 nanometers and 430 nanometers. Spirit had become embedded at Troy by about a week later.

The two rocks near the upper right corner of this view are each about 10 centimeters (4 inches) long and 2 to 3 centimeters (1 inch) wide.

Tuesday, January 12, 2010

NASA to Check for Unlikely Winter Survival of Mars Lander

NASA's Phoenix Mars Lander is visible within this enhanced-color image of the Phoenix landing site taken on Jan. 6
Beginning Jan. 18, NASA's Mars Odyssey orbiter will listen for possible, though improbable, radio transmissions from the Phoenix Mars Lander, which completed five months of studying an arctic Martian site in November 2008.

The solar-powered lander operated two months longer than its three-month prime mission during summer on northern Mars before the seasonal ebb of sunshine ended its work. Since then, Phoenix's landing site has gone through autumn, winter and part of spring. The lander's hardware was not designed to survive the temperature extremes and ice-coating load of an arctic Martian winter.

In the extremely unlikely case that Phoenix survived the winter, it is expected to follow instructions programmed on its computer. If systems still operate, once its solar panels generate enough electricity to establish a positive energy balance, the lander would periodically try to communicate with any available Mars relay orbiters in an attempt to reestablish contact with Earth. During each communications attempt, the lander would alternately use each of its two radios and each of its two antennas.

Odyssey will pass over the Phoenix landing site approximately 10 times each day during three consecutive days of listening this month and two longer listening campaigns in February and March.

"We do not expect Phoenix to have survived, and therefore do not expect to hear from it. However, if Phoenix is transmitting, Odyssey will hear it," said Chad Edwards, chief telecommunications engineer for the Mars Exploration Program at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "We will perform a sufficient number of Odyssey contact attempts that if we don't detect a transmission from Phoenix, we can have a high degree of confidence that the lander is not active."

The amount of sunshine at Phoenix's site is currently about the same as when the lander last communicated, on Nov. 2, 2008, with the sun above the horizon about 17 hours each day. The listening attempts will continue until after the sun is above the horizon for the full 24.7 hours of the Martian day at the lander's high-latitude site. During the later attempts in February or March, Odyssey will transmit radio signals that could potentially be heard by Phoenix, as well as passively listening.

If Odyssey does hear from Phoenix, the orbiter will attempt to lock onto the signal and gain information about the lander's status. The initial task would be to determine what capabilities Phoenix retains, information that NASA would consider in decisions about any further steps.

Monday, January 11, 2010

LRO Team Begins to Release New Image Series

LRO imageThe LROC Team begins a new series of Featured Images highlighting the regions of interest for potential future human and robotic lunar exploration that LRO is imaging for NASA's Constellation Program. There are 50 of these regions, which were selected prior to LRO’s launch based on expert input from the lunar science community and NASA engineers. For each of these 50 regions, the LROC Team is collecting a comprehensive set of image data.

These images, and the associated information products derived from them (such as boulder distribution maps, slope maps and digital terrain models), will guide engineers and scientists as they develop their plans for how they would continue to explore the moon both robotically and with humans.

Lunar scientists have been studying the vast data returned from the Apollo missions for almost 40 years. As a result, much is known about the moon. Even so, there remains much that we do not know about the moon. Accordingly, each of these 50 regions is associated with either an immensely compelling lunar science question or an exploration-enabling resource, or both, that will be useful to future explorers. However, these 50 regions aren't intended as actual NASA landing sites, but instead are representative locations whose study will provide mission planners and lunar scientists working on future human and robotic lunar exploration with lots of data for a comprehensive suite of interesting and relevant terrains all over the lunar surface.

For more information visit here - http://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lroc-20100107-new-images.html

Thursday, January 07, 2010

NASA's WISE Eye Spies First Glimpse of the Starry Sky

This infrared snapshot of a region in the constellation Carina near the Milky Way was taken shortly after NASA's Wide-field Infrared Survey Explorer (WISE) ejected its cover
NASA's Wide-field Infrared Survey Explorer, or WISE, has captured its first look at the starry sky that it will soon begin surveying in infrared light.

Launched on Dec. 14, WISE will scan the entire sky for millions of hidden objects, including asteroids, "failed" stars and powerful galaxies. WISE data will serve as navigation charts for other missions, such as NASA's Hubble and Spitzer Space Telescopes, pointing them to the most interesting targets the mission finds.

A new WISE infrared image was taken shortly after the space telescope's cover was removed, exposing the instrument's detectors to starlight for the first time. The picture shows about 3,000 stars in the Carina constellation and can be viewed online at http://www.nasa.gov/mission_pages/WISE/multimedia/wise20100106.html .

The image covers a patch of sky about three times larger than the full moon, and was presented today at the 215th meeting of the American Astronomical Society in Washington. The patch was selected because it does not contain any unusually bright objects, which could damage instrument detectors if observed for too long. The picture was taken while the spacecraft was staring at a fixed patch of sky and is being used to calibrate the spacecraft's pointing system.

When the WISE survey begins, the spacecraft will scan the sky continuously as it circles the globe, while an internal scan mirror counteracts its motion. This allows WISE to take "freeze-frame" snapshots every 11 seconds, resulting in millions of images of the entire sky.

"Right now, we are busy matching the rate of the scan mirror to the rate of the spacecraft, so we will capture sharp pictures as our telescope sweeps across the sky," said William Irace, the mission's project manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

To sense the infrared glow of stars and galaxies, the WISE spacecraft cannot give off any detectable infrared light of its own. This is accomplished by chilling the telescope and detectors to ultra-cold temperatures. The coldest of WISE's detectors will operate at less than 8 Kelvin, or minus 445 degrees Fahrenheit.

The first sky survey will be complete in six months, followed by a second scan of one-half of the sky lasting three months. The mission ends when the frozen hydrogen that keeps the instrument cold evaporates away, an event expected to occur in October 2010.

Preliminary survey images are expected to be released six months later, in April 2011, with the final atlas and catalog coming 11 months later, in March 2012. Selected images will be released to the public beginning in February 2010.

JPL manages WISE for NASA's Science Mission Directorate in Washington. The mission was competitively selected under NASA's Explorers Program, managed by NASA's Goddard Space Flight Center in Greenbelt, Md. The science instrument was built by the Space Dynamics Laboratory in Logan, Utah, and the spacecraft was built by Ball Aerospace & Technologies Corp. in Boulder, Colo. Science operations and data processing take place at the Infrared Processing and Analysis Center at the California Institute of Technology in Pasadena.

Wednesday, January 06, 2010

Goddard Scientist's Breakthrough Given Ticket to Mars

Jennifer EigenbrodeThe quest to discover whether Mars ever hosted an environment friendly to microscopic forms of life has just gotten a shot in the arm.

"Mars was a lot different 3-1/2 billion years ago. It was more like Earth with liquid water," said Jennifer Eigenbrode, a scientist at the NASA Goddard Space Flight Center in Greenbelt, Md. "Maybe life existed back then. Maybe it has persisted, which is possible given the fact that we've found life in every extreme environment here on Earth. If life existed on Mars, maybe it adapted very much like life adapted here."

An experiment proposed by Eigenbrode has been added to the Sample Analysis at Mars (SAM) instrument on a mobile NASA laboratory that will land on Mars in 2012. Goddard scientists developed SAM. The newly added experiment will enhance SAM's ability to analyze large carbon molecules if the mission is fortunate enough to find any.

The mission, NASA's Mars Science Laboratory, will be checking whether a carefully chosen area of Mars has ever had an environment favorable for the development of life and preservation of evidence about life. The mission's car-sized rover will analyze dozens of samples scooped from soil and drilled from rocks.

None of the rover's 10 instruments is designed to identify past or present life, but SAM has a key role of checking for carbon-containing compounds that potentially can be ingredients or markers of life. Most environments on Mars may not have enabled preservation of these compounds, which are called organic molecules, but if any did, that could be evidence of conditions favorable for life.

Eigenbrode secured the flight opportunity for her experiment after successfully proving in a series of tests earlier this year that the combination of heat and a specific chemical would significantly enhance SAM's ability to analyze large carbon molecules.

Tuesday, January 05, 2010

The PARASOL Satellite Moving Off the A-Train's Track

After nearly 5 years of concurrent operations with the Afternoon Constellation, known as the "A-Train," the PARASOL satellite is going on another orbit "track." The A-Train includes a number of NASA satellites that orbit the Earth one behind the other on the same track and until this month, PARASOL has been part of that train.



PARASOL is an Earth observation mission, managed by the French Space Agency (CNES). PARASOL stands for "Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar." According to CNES, it was maneuvered to leave its position inside the A-Train at 12:48 UTC, December 2, 2009.

The A-Train satellite formation currently consists of five satellites flying in close proximity: Aqua, CloudSat, CALIPSO, PARASOL and Aura. Each of these satellites cross the equator within a few minutes of each another at around 1:30 p.m. local time. By combining the different sets of nearly simultaneous observations, scientists are able to gain a better understanding its main mission, studying the important parameters related to climate change. As an additional benefit, the A-Train satellites provide unique information about tropical cyclones, the collective term for tropical depressions, tropical storms, hurricanes and typhoons.