Showing posts with label NASA Technology. Show all posts
Showing posts with label NASA Technology. Show all posts

Thursday, January 06, 2011

NASA Tests New Propulsion System For Robotic Lander Prototype

NASA's Robotic Lunar Lander Development Project at Marshall Space Flight Center in Huntsville, Ala., has completed a series of hot fire tests and taken delivery of a new propulsion system for integration into a more sophisticated free-flying autonomous robotic lander prototype. The project is partnered with the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., to develop a new generation of small, smart, versatile robotic landers to achieve scientific and exploration goals on the surface of the moon and near-Earth asteroids.

The new robotic lander prototype will continue to mature the development of a robotic lander capability by bringing online an autonomous flying test lander that will be capable of flying up to sixty seconds, testing the guidance, navigation and control system by demonstrating a controlled landing in a simulated low gravity environment.

By the spring of 2011, the new prototype lander will begin flight tests at the U.S. Army's Redstone Arsenal Test Center in Huntsville, Ala.

The prototype’s new propulsion system consists of 12 small attitude control thrusters, three primary descent thrusters to control the vehicle’s altitude, and one large "gravity-canceling" thruster which offsets a portion of the prototype’s weight to simulate a lower gravity environment, like that of the moon and asteroids. The prototype uses a green propellant, hydrogen peroxide, in a stronger concentration of a solution commonly used in homes as a disinfectant. The by-products after use are water and oxygen.

Thursday, November 18, 2010

NASA's Mobile Mars Laboratory nearly complete for Flight

NASA's Mobile Mars Laboratory
The Sample Analysis at Mars (SAM) instrument suite has completed assembly at NASA's Goddard Space Flight Center in Greenbelt, Md., and is nearly ready for a December delivery to NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., where it will be joined to the Curiosity rover. SAM and Curiosity are set to fly on the upcoming Mars Science Laboratory (MSL) rover mission scheduled for launch in the fall of 2011.

SAM will become an automated, mobile laboratory as it is carried across Mars by the rover when the mission arrives at the Red Planet in 2012. Together with other instruments on Curiosity, SAM will assess whether Mars ever was, or is still today, an environment able to support microbial life.

"We expect Curiosity will make amazing discoveries," said SAM Principal Investigator Dr. Paul Mahaffy of NASA Goddard, "and we are looking forward to the contributions our mobile chemistry laboratory can make to a better understanding of the history of our neighboring planet."

SAM is in flight configuration, meaning its instruments are in the condition they will be during launch and are ready to begin operations on Mars. The instrument suite (a mass spectrometer, gas chromatograph, and tunable laser spectrometer) has started final environmental testing this week, which includes vibration and thermal testing to ensure SAM can survive the launch, deep space flight, and conditions on Mars.

Once at Mars, SAM will examine the planet's habitability by exploring molecular and elemental chemistry relevant to life. SAM will analyze samples of Martian rock and soil to assess carbon chemistry through a search for organic compounds. The lab will also determine the chemical state of light elements other than carbon, and look for isotopic tracers of planetary change.

Wednesday, October 20, 2010

Pinwheel of Star Birth


NASA - Though the universe is chock full of spiral-shaped galaxies, no two look exactly the same. This face-on spiral galaxy, called NGC 3982, is striking for its rich tapestry of star birth, along with its winding arms. The arms are lined with pink star-forming regions of glowing hydrogen, newborn blue star clusters, and obscuring dust lanes that provide the raw material for future generations of stars. The bright nucleus is home to an older population of stars, which grow ever more densely packed toward the center.

NGC 3982 is located about 68 million light-years away in the constellation Ursa Major. The galaxy spans about 30,000 light-years, one-third of the size of our Milky Way galaxy. This color image is composed of exposures taken by the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), the Advanced Camera for Surveys (ACS), and the Wide Field Camera 3 (WFC3). The observations were taken between March 2000 and August 2009. The rich color range comes from the fact that the galaxy was photographed invisible and near-infrared light. Also used was a filter that isolates hydrogen emission that emanates from bright star-forming regions dotting the spiral arms.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C.

Friday, October 08, 2010

MAVEN task to consider – “How Sun Steals Martian Atmosphere”

The Red Planet bleeds. Not blood, but its atmosphere, slowly trickling away to space. The culprit is our sun, which is using its own breath, the solar wind, and its radiation to rob Mars of its air. The crime may have condemned the planet's surface, once apparently promising for life, to a cold and sterile existence.

In the upper left of this Hubble Space Telescope image, at high northern latitudes, a large chevron-shaped area of water ice clouds mark a storm front. Along the right limb, a large cloud system has formed around the Olympus Mons volcano
Features on Mars resembling dry riverbeds, and the discovery of minerals that form in the presence of water, indicate that Mars once had a thicker atmosphere and was warm enough for liquid water to flow on the surface. However, somehow that thick atmosphere got lost in space. It appears Mars has been cold and dry for billions of years, with an atmosphere so thin, any liquid water on the surface quickly boils away while the sun's ultraviolet radiation scours the ground.

Such harsh conditions are the end of the road for known forms of life. Although it's possible that martian life went underground, where liquid water may still exist and radiation can't reach.

The lead suspect for the theft is the sun, and its favorite M.O. may be the solar wind. All planets in our solar system are constantly blasted by the solar wind, a thin stream of electrically charged gas that continuously blows from the sun's surface into space. On Earth, our planet's global magnetic field shields our atmosphere by diverting most of the solar wind around it. The solar wind’s electrically charged particles, ions and electrons, have difficulty crossing magnetic fields.

"Mars can't protect itself from the solar wind because it no longer has a shield, the planet's global magnetic field is dead," said Bruce Jakosky of the University of Colorado, Boulder. Jakosky is the Principal Investigator for NASA's MAVEN mission, which will investigate what is responsible for the loss of the martian atmosphere. NASA selected the MAVEN (Mars Atmosphere and Volatile Evolution Mission) on September 15, 2008.

Tuesday, October 05, 2010

Ping-Pong Balls to Float Crew Capsule Simulator

If ping-pong balls can float a sunken boat, they should be able to keep an uncrewed space capsule simulator from sinking.

That's what a team of summer students and engineers think at NASA’s Langley Research Center in Hampton, Va. Langley is fabricating a proposed design of an astronaut crew module simulator for uncrewed flight-testing as part of the agency's effort to build a vehicle to replace the space shuttle.

Because the crew module will not be pressurized during the test, it will not have the buoyancy of a pressurized spacecraft. This puts the simulated crew module at risk of sinking to the bottom of the Atlantic Ocean after splashdown.

Ping-Pong Ball
"At first we didn't really realize that we were going to get so far in proving that it would be possible," said Kirk, a Suffolk, Va., native attending Virginia Tech as an aerospace engineering major. "But when we thought about everything logically, it just seemed like ping-pong balls were the way to go."

She and a team of seven other students worked the project in Langley's Mechanical Systems Branch, where they were assigned for the summer.

DiNonno got the idea from a Discovery Channel program about raising a sunken boat using 27,000 ping-pong balls.

Engineer David Covington said that when DiNonno suggested the ping-pong ball idea, "I just laughed. Not a 'what are you thinking' kind of laugh, but more of a 'that's the most awesome thing I've heard in a long time' laugh. I asked him 'are you serious?' and he said 'yeah, we're authorized to do a four-week study.' So we went straight to work."

Wednesday, September 22, 2010

NASA's LRO Exposes Moon's Complex, Turbulent Youth

The moon was bombarded by two distinct populations of asteroids or comets in its youth, and its surface is more complex than previously thought, according to new results from NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft featured in three papers appearing in the Sept. 17 issue of Science.

Moon
In the first paper, lead author James Head of Brown University in Providence, R.I., describes results obtained from a detailed global topographic map of the moon created using LRO's Lunar Orbiter Laser Altimeter (LOLA). "Our new LRO LOLA dataset shows that the older highland impactor population can be clearly distinguished from the younger population in the lunar 'maria' -- giant impact basins filled with solidified lava flows," says Head. "The highlands have a greater density of large craters compared to smaller ones, implying that the earlier population of impactors had a proportionally greater number of large fragments than the population that characterized later lunar history."

Meteorite impacts can radically alter the history of a planet. The moon, Mars, and Mercury all bear scars of ancient craters hundreds or even thousands of miles across. If Earth was subjected to this assault as well -- and there's no reason to assume our planet was spared -- these enormous impacts could have disrupted the initial origin of life. Large impacts that occurred later appear to have altered life's evolution. The approximately 110-mile-diameter, partially buried crater at Chicxulub, in the Yucatan Peninsula of Mexico, is from an impact about 65 million years ago that is now widely believed to have led or contributed to the demise of the dinosaurs and many other lifeforms.

Scientists trying to reconstruct the meteorite bombardment history of Earth face difficulty because impact craters are eroded by wind and water, or destroyed by the action of plate tectonics, the gradual movement and recycling of the Earth's crust. However, a rich record of craters is preserved on the moon, because it has only an extremely thin atmosphere – a vacuum better than those typically used for experiments in laboratories on Earth. The moon’s surface has no liquid water and no plate tectonics. The only source of significant erosion is other impacts.

"The moon is thus analogous to a Rosetta stone for understanding the bombardment history of the Earth," said Head. "Like the Rosetta stone, the lunar record can be used to translate the 'hieroglyphics' of the poorly preserved impact record on Earth."

Tuesday, September 07, 2010

The Moon Puts on Camo

A new geologic map of the moon's Schrödinger basin paints an instant, camouflage-colored portrait of what a mash-up the moon's surface is after eons of violent events. The geologic record at Schrödinger is still relatively fresh because the basin is only about 3.8 billion years old; this makes it the moon's second-youngest large basin (it's roughly 320 kilometers, or 200 miles, in diameter).


This detailed geologic map of Schrödinger basin, which formed when a huge object struck the moon, reveals a patchwork of lunar material, including the peak ring (inner brown ring), recent volcanic activity (red), cratering (yellow) and plains material (dark green and kelly green). Credit: NASA/Scott Mest

Schrödinger is located near the moon's south pole, a region where pockets of permanent ice are thought to exist. The map will help researchers understand lunar geologic history and identify suitable landing sites for future exploration. Scott Mest, a research scientist with the Planetary Science Institute working at NASA's Goddard Space Flight Center in Greenbelt, Md., and his colleagues created this geologic map -- the most detailed one to date -- by combining topographic data from the Lunar Orbiter Laser Altimeter, a Goddard instrument aboard the 2009 Lunar Reconnaissance Orbiter, with images and spectral data from the earlier Clementine and Lunar Prospector missions.

Schrödinger is an example of an intriguing type of basin called a peak-ring. Like the basin rim (brown outer ring), the smaller and more fragmented peak ring (brown inner ring) is a mountainous region of crust that rose up after a huge object, probably measuring 35-40 kilometers, or about 21-25 miles, smacked into the moon here. These areas of raised crust are the oldest rocks in the basin and just about the only material that wasn't melted by the heat from the object's impact. The melted material was spewed in all directions and formed the plains. Patches of plains material can have slightly different textures and albedo (indicated by dark green and kelly green), probably because they cooled at different times. Fractures (black lines) formed in the basin floor as the material cooled.

Friday, August 20, 2010

NASA's Marks 35th Anniversary of Mars Viking Mission

First photograph ever taken on the surface of the planet Mars
From the perennial Mars hoax to Ray Bradbury's The Martian Chronicles, no other body in our solar system has so captured the human imagination. Throughout history mankind has gazed into the night sky wondering what civilizations awaited those who landed on the Red Planet's surface. The novels of Burroughs and others tout the planet's allure and films have warned humanity of its dangers.

In 1965, the Mariner 4 spacecraft sent the first images of another planet to waiting scientists on Earth. Since that image, the Red Planet has revealed a world strangely familiar, yet challenging. Each time scientists feel close to understanding Mars, new discoveries send them back to the drawing board to revise existing theories.

In the 35 years since NASA launched Viking 1 on Aug. 20, 1975, the ambitious mission only whetted the scientific world and public's enthusiasm for future space exploration. In the ensuing years, NASA has launched the Phoenix Mars Lander, Mars Reconnaissance Orbiter and Mars Exploration Rovers, among others. Perhaps the most successful of these missions is Mars Exploration Rovers. Launched in June and July 2003, respectively, Spirit and Opportunity landed on Mars each for a 90-day mission that continues after more than 6 years.

For centuries, scientists wondered if Mars might be covered with vegetation -- or even inhabited by intelligent beings. Today, we know Mars to be quite different. It is a frozen desert world with now silent volcanoes and deep canyons. Polar ice caps expand and contract with the Martian seasons.

While the story began years earlier, it culminated in August and September 1975 with the launch of two large, nearly identical spacecraft from Cape Canaveral, Fl. Vikings 1 and 2, named for the fearless Nordic explorers of Earth, finally give humans a close-up look at this alien world.

Viking 1 and 2, each consisting of an orbiter and a lander, became the first space probes to obtain high resolution images of the Martian surface; characterize the structure and composition of the atmosphere and surface; and conduct on-the-spot biological tests for life on another planet.

Among the discoveries about Mars over the years, one stands out above all others: the possible presence of liquid water, either in its ancient past or preserved in the subsurface today. Water is key because almost everywhere water is found on Earth, so is life. If Mars once had liquid water, or still does today, it's compelling to ask whether any microscopic life forms could have developed on its surface.

Viking 1 arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia. Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.

Tuesday, August 10, 2010

Hundreds of New vision from Telescope ranging Mars



The latest set of new images from the telescopic High Resolution Imaging Science Experiment Camera on NASA's Mars Reconnaissance Orbiter offers detailed views of diverse Martian landscapes.

Features as small as desks are revealed in the 314 observations made between June 6 and July 7, 2010, now available on the camera team's site and NASA's Planetary Data System.

The camera is one of six instruments on NASA's Mars Reconnaissance Orbiter, which reached Mars in 2006. For more information about the mission, see http://mars.jpl.nasa.gov/mro/ .

Thursday, June 17, 2010

Research Suggests Water Content of Moon's Interior Underestimated

Earthrise as seen from Apollo 8.NASA - funded scientists estimate from recent research that the volume of water molecules locked inside minerals in the moon’s interior could exceed the amount of water in the Great Lakes here on Earth.

Scientists at the Carnegie Institution’s Geophysical Laboratory in Washington, along with other scientists across the nation, determined that the water was likely present very early in the moon’s formation history as hot magma started to cool and crystallize. This finding means water is native to the moon.

“For over 40 years we thought the moon was dry,” said Francis McCubbin of Carnegie and lead author of the report published in Monday's Online Early Edition of the Proceedings of the National Academy of Sciences. “In our study we looked at hydroxyl, a compound with an oxygen atom bound with hydrogen, and apatite, a water-bearing mineral in the assemblage of minerals we examined in two Apollo samples and a lunar meteorite.”

McCubbin’s team utilized tests which detect elements in the parts per billion range. Combining their measurements with models that characterize how the material crystallized as the moon cooled during formation, they found that the minimum water content ranged from 64 parts per billion to 5 parts per million. The result is at least two orders of magnitude greater than previous results from lunar samples that estimated water content of the moon to be less than 1 parts per billion.

"In this case, when we talk about water on the moon, we mean water in the structural form hydroxyl,” said Jim Green, director of the Planetary Science Division at NASA Headquarters in Washington. “This is a very minor component of the rocks that make up the lunar interior.”

The origin of the moon is now commonly believed to be the result of a Mars-sized object that impacted the Earth 4.5 billion years ago. This impact put a large amount of material into Earth’s orbit that ultimately compacted to form the moon. The lunar magma ocean that is thought to have formed at some point during the compacting process, began to cool. During this cooling, water either escaped or was preserved as hydroxyl molecules in the crystallizing minerals.

Tuesday, June 08, 2010

NASA Rover Finds Clue to Mars' Past And Environment for Life

Rocks examined by NASA's Spirit Mars Rover hold evidence of a wet, non-acidic ancient environment that may have been favorable for life. Confirming this mineral clue took four years of analysis by several scientists.

An outcrop that Spirit examined in late 2005 revealed high concentrations of carbonate, which originates in wet, near-neutral conditions, but dissolves in acid. The ancient water indicated by this find was not acidic.

NASA's rovers have found other evidence of formerly wet Martian environments. However the data for those environments indicate conditions that may have been acidic. In other cases, the conditions were definitely acidic, and therefore less favorable as habitats for life.

Laboratory tests helped confirm the carbonate identification. The findings were published online Thursday, June 3 by the journal Science.

"This is one of the most significant findings by the rovers," said Steve Squyres of Cornell University in Ithaca, N.Y. Squyres is principal investigator for the Mars twin rovers, Spirit and Opportunity, and a co-author of the new report. "A substantial carbonate deposit in a Mars outcrop tells us that conditions that could have been quite favorable for life were present at one time in that place. "



Spirit inspected rock outcrops, including one scientists called Comanche, along the rover's route from the top of Husband Hill to the vicinity of the Home Plate plateau which Spirit has studied since 2006. Magnesium iron carbonate makes up about one-fourth of the measured volume in Comanche. That is a tenfold higher concentration than any previously identified for carbonate in a Martian rock.

"We used detective work combining results from three spectrometers to lock this down," said Dick Morris, lead author of the report and a member of a rover science team at NASA's Johnson Space Center in Houston."The instruments gave us multiple, interlocking ways of confirming the magnesium iron carbonate, with a good handle on how much there is."

Massive carbonate deposits on Mars have been sought for years without much success. Numerous channels apparently carved by flows of liquid water on ancient Mars suggest the planet was formerly warmer, thanks to greenhouse warming from a thicker atmosphere than exists now. The ancient, dense Martian atmosphere was probably rich in carbon dioxide, because that gas makes up nearly all the modern, very thin atmosphere.

It is important to determine where most of the carbon dioxide went. Some theorize it departed to space. Others hypothesize that it left the atmosphere by the mixing of carbon dioxide with water under conditions that led to forming carbonate minerals. That possibility, plus finding small amounts of carbonate in meteorites that originated from Mars, led to expectations in the 1990s that carbonate would be abundant on Mars. However, mineral-mapping spectrometers on orbiters since then have found evidence of localized carbonate deposits in only one area, plus small amounts distributed globally in Martian dust.

Monday, May 24, 2010

Phoenix Mars Lander is Silent, New Image Shows Damage

Two images of the Phoenix Mars lander taken from Martian orbit in 2008 and 2010. The 2008 lander image shows two relatively blue spots on either side corresponding to the spacecraft's clean circular solar panels. In the 2010 image scientists see a dark shadow that could be the lander body and eastern solar panel, but no shadow from the western solar panel. Image credit: NASA/JPL-Caltech/University of Arizona
PASADENA, Calif. -- NASA's Phoenix Mars Lander has ended operations after repeated attempts to contact the spacecraft were unsuccessful. A new image transmitted by NASA's Mars Reconnaissance Orbiter shows signs of severe ice damage to the lander's solar panels.

"The Phoenix spacecraft succeeded in its investigations and exceeded its planned lifetime," said Fuk Li, manager of the Mars Exploration Program at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "Although its work is finished, analysis of information from Phoenix's science activities will continue for some time to come."

Last week, NASA's Mars Odyssey orbiter flew over the Phoenix landing site 61 times during a final attempt to communicate with the lander. No transmission from the lander was detected. Phoenix also did not communicate during 150 flights in three earlier listening campaigns this year.

Earth-based research continues on discoveries Phoenix made during summer conditions at the far-northern site where it landed May 25, 2008. The solar-powered lander completed its three-month mission and kept working until sunlight waned two months later.

This view of one of the Mars Phoenix Lander's solar panels is a composite of multiple exposures taken by the spacecraft's Surface Stereo Imager camera. Image credit: NASA/JPL-Caltech/University Arizona/Texas A&M University
Phoenix was not designed to survive the dark, cold, icy winter. However, the slim possibility Phoenix survived could not be eliminated without listening for the lander after abundant sunshine returned.

An image of Phoenix taken this month by the High Resolution Imaging Science Experiment, or HiRISE, camera on board the Mars Reconnaissance Orbiter suggests the lander no longer casts shadows the way it did during its working lifetime.

"Before and after images are dramatically different," said Michael Mellon of the University of Colorado in Boulder, a science team member for both Phoenix and HiRISE. "The lander looks smaller, and only a portion of the difference can be explained by accumulation of dust on the lander, which makes its surfaces less distinguishable from surrounding ground."

Apparent changes in the shadows cast by the lander are consistent with predictions of how Phoenix could be damaged by harsh winter conditions. It was anticipated that the weight of a carbon-dioxide ice buildup could bend or break the lander's solar panels. Mellon calculated hundreds of pounds of ice probably coated the lander in mid-winter.

During its mission, Phoenix confirmed and examined patches of the widespread deposits of underground water ice detected by Odyssey and identified a mineral called calcium carbonate that suggested occasional presence of thawed water. The lander also found soil chemistry with significant implications for life and observed falling snow. The mission's biggest surprise was the discovery of perchlorate, an oxidizing chemical on Earth that is food for some microbes and potentially toxic for others.

"We found that the soil above the ice can act like a sponge, with perchlorate scavenging water from the atmosphere and holding on to it," said Peter Smith, Phoenix principal investigator at the University of Arizona in Tucson. "You can have a thin film layer of water capable of being a habitable environment. A micro-world at the scale of grains of soil -- that's where the action is."

The perchlorate results are shaping subsequent astrobiology research, as scientists investigate the implications of its antifreeze properties and potential use as an energy source by microbes. Discovery of the ice in the uppermost soil by Odyssey pointed the way for Phoenix. More recently, the Mars Reconnaissance Orbiter detected numerous ice deposits in middle latitudes at greater depth using radar and exposed on the surface by fresh impact craters.

"Ice-rich environments are an even bigger part of the planet than we thought," Smith said. "Somewhere in that vast region there are going to be places that are more habitable than others."

The Mars Reconnaissance Orbiter reached the planet in 2006 to begin a two-year primary science mission. Its data show Mars had diverse wet environments at many locations for differing durations during the planet's history, and climate-change cycles persist into the present era. The mission has returned more planetary data than all other Mars missions combined.

Thursday, May 20, 2010

NASA Uses 'Polka Dots' For Precision Measurements

Rob Black, senior applications engineer with Shape Fidelity Inc., of Huntsville, Ala., a contractor with the Ares I Upper Stage team, sets up for photogrammetry process.What weighs 600 pounds, is shiny-silver with black and white polka dots and shaped like an upside-down saucer? If you guessed some sort of mod, fancy looking UFO, you are close. It's a fuel tank dome being developed for NASA's next-generation launch vehicles.

But why polka dots? They are part of an engineering tool called photogrammetry, the practice of determining the geometric properties of objects from photographic images. It is a process used by engineers at NASA's Marshall Space Flight Center in Huntsville, Ala., to accurately measure most everything from hardware to the tools used to make the hardware. Analytical photogrammetry is now routinely employed in tasks as diverse as machine tool inspection, fixture checking and structural deformation monitoring.

"This is a reasonably cheap process that provides engineers with a precise, three-dimensional measuring tool," said Sandeep Shah, upper stage manufacturing and assembly subsystem manager for Ares Projects at the Marshall Center. "It's a novel application of an existing technology that allows us to capture the true geometry of parts and components as they are produced, and provides immediate feedback to our team."

So How Does It Work?
The system typically requires only two engineers, a computer, a camera, targets or dots, two scale bars -- used as points of reference because of their exact length -- and a specially designed 3-D scanner.

"That’s what makes photogrammetry such a great tool," Shah said. "It's simple, mobile, fast, cheap and extremely accurate. Though we've only used photogrammetry for a couple of years, I can't imagine future development and production of flight hardware without it."

First, black and white target dots are irregularly placed several inches apart on the test object. The irregular spacing is designed to assist the computer software in identifying each individual target. Next, the engineer takes pictures of the test article from every angle, using a standard, 10-megapixel camera. The number of photographs needed varies depending on the size and shape of the test article. The photos then are transferred to a computer, where the software identifies the targets to produce a skeleton-like outline, referred to as an optical global framework.

Finally, a three-dimensional, white-light scanner is used to scan small sections of the test article -- producing accurate surface definitions and thus a near-perfect computer-aided design, or CAD, model.

Tuesday, May 18, 2010

NASA Invites Public to Take Virtual Walk on Moon

More than 37 years after humans last walked on the moon, planetary scientists are inviting members of the public to return to the lunar surface as “virtual astronauts” to help answer important scientific questions.

No spacesuit or rocket ship is required -- all visitors need to do is go to www.moonzoo.org and be among the first to see the lunar surface in unprecedented detail. New high-resolution images, taken by NASA’s Lunar Reconnaissance Orbiter Camera (LROC), offer exciting clues to unveil or reveal the history of the moon and our solar system.

“We need Web users around the world to help us interpret these stunning new images of the lunar surface,” said Chris Lintott of Oxford University and chair of the Citizen Science Alliance. “If you only spend five minutes on the site counting craters you’ll be making a valuable contribution to science and, who knows, you might run across a Russian spacecraft.”


Scientists are particularly interested in knowing how many craters appear in a particular region of the moon in order to determine the age and depth of the lunar surface (regolith). Fresh craters left by recent impacts provide clues about the potential risks from meteor strikes on the moon and on Earth.

“We hope to address key questions about the impact bombardment history of the moon and discover sites of geological interest that have never been seen before,” said Katherine Joy of the Lunar and Planetary Institute and a Moon Zoo science team member.

NASA Lunar Science Institute (NLSI) scientists are contributing to the Moon Zoo efforts by providing science expertise. NLSI is also providing educational content and supporting outreach goals of the project.

“The NASA Lunar Science Institute is very excited to be involved with Moon Zoo and support lunar citizen science,” said David Morrison, NLSI director. “Science and public outreach are cornerstones of our Institute; Moon Zoo will contribute to the accomplishment of important science, while being a major step forward in participatory exploration.”

The Moon Zoo Web site is a citizen science project developed by the Citizen Science Alliance, a group of research organizations and museums, and builds on the team's success with Galaxy Zoo, which has involved more than 250,000 people in astronomical research.

“The Lunar Reconnaissance Orbiter Project Science Office is excited to see LRO data being used for citizen science projects,” said Rich Vondrak, LRO project scientist from NASA’s Goddard Space Flight Center, Greenbelt, Md. “The Moon Zoo project provides an opportunity for everyone to participate in analysis of images from the LRO Camera and to make a significant contribution to scientific knowledge about the moon.”

The Lunar Reconnaissance Orbiter mission is managed by NASA's Goddard Space Flight Center, Greenbelt, Md. and the LROC instruments are based out of Arizona State University in Tempe, Az. The NASA Lunar Science Institute is based out of NASA’s Ames Research Center, Moffett Field, Calif.