Thursday, August 21, 2008

Inertial navigation systems in detail

INSs have angular and linear accelerometers (for changes in position); some include a gyroscopic element (for maintaining an absolute angular reference).

Angular accelerometers measure how the vehicle is rotating in space. Generally, there's at least one sensor for each of the three axes: pitch (nose up and down), yaw (nose left and right) and roll (clockwise or counter-clockwise from the cockpit).

Linear accelerometers measure how the vehicle is moving in space. Since it can move in three axes (up & down, left & right, forward & back), there is a linear accelerometer for each axis.

A computer continually calculates the vehicle's current position. First, for each of the six degrees of freedom (x,y,z and θ x, θ y and θ z), it integrates the sensed amount of acceleration over time to figure the current velocity. Then it integrates the velocity to figure the current position.

Inertial guidance is difficult without computers. The desire to use inertial guidance in the Minuteman missile and Project Apollo drove early attempts to miniaturize computers.

Inertial guidance systems are now usually combined with satellite navigation systems through a digital filtering system. The inertial system provides short term data, while the satellite system corrects accumulated errors of the inertial system.

An inertial guidance system that will operate near the surface of the earth must incorporate Schuler tuning so that its platform will continue pointing towards the center of the earth as a vehicle moves from place to place.

No comments: